The four-cylinder power train is equipped with cam follower control with two overhead camshafts for an optimal power output and maximum speed strength while at the same time fulfilling criteria for rigidity, minimal moved masses and optimal time cross-sections at the valves. It offers the perfect combination of maximum rigidity and minimal weight of moved valve gear components with a highly compact cylinder head design at the same time.
Valve clearance is compensated via very small, lightweight adjustment plates guided in the spring seats. On the intake side the spring seats are manufactured from lightweight high-performance aluminum. The moved masses of the cam follower valve control are lower than with a similar bucket-tappet solution. The low oscillating masses enable high valve acceleration for full cam profiles and high valve opening cross sections.
The speed limit defined for this series motorcycle is 14,200 r.p.m., though the purely mechanical speed tolerance is way above this. The large cylinder bore of 80 mm enabled the largest possible and therefore most performance-friendly valve disc diameters to be used. The valve disc diameters on the intake side are 33.5 mm, and on the exhaust side 27.2 mm, highly impressive as this is the greatest possible filling in the supersport 1000 segment.
For the lubricating system, the engine uses wet sump lubrication with an Eaton oil pump, a tried-and-tested solutions for this segment. In place of a heat exchanger, a separate oil cooler is used for oil cooling, which is integrated into the lower trim panel under the water cooler to aid flow aerodynamics. Use of an oil cooler prevents unwanted additional thermal pressurisation of the coolant, thereby enabling the use of a smaller and lighter water cooler and hence less coolant.
The focus here was on a lower construction width, a compact and, above all, lightweight construction and also on the arrangement of the electrical sub-assemblies and their drives. For instance, the alternating current generator is located on the left crankshaft stump and is equipped with a permanent magnet. It produces a power of 434 W at 6,000 r.p.m. and is designed for a maximum speed of 16,000 r.p.m. The transmission starter is capable of 800 W, weighs 1,050 g and is located in the left upper crankcase half behind the cylinders It is coupled via a freewheel and has a reducing effect at a ratio of 1:24.61 on the left outer crank-web, which is designed as a spur gear. To reduce weight, the left side cover for alternator and starter is manufactured from light magnesium.
Fuel injection works fully sequentially, i.e. the fuel is injected individually into the intake duct according to the intake stroke of the relevant cylinder. To improve the torque curve, the engine is equipped with sophisticated, controlled intake manifold technology. Depending on the speed, the length of the intake funnel is controlled by the characteristic map and varied in two stages via a servomotor attached to the intake silencer. The appropriate amount of fuel is added via four injector nozzles each located at the throttle-valve rail and above the intake pipe in order to obtain optimal filling. The fuel injector nozzles are actuated separately or together depending on speed and power requirement.